
see Google spreadsheet on Moodle for your group assignment

Announcement: Revised TP Dates

59

Date 9.9 16.9. 23.9. 30.9. 7.10. 14.10. 21.10. 28.10. 4.11. 11.11. 18.11. 25.11. 2.12. 9.12. 16.12.

8–9 TP 3 TP 1 TP 4 TP 5 TP 2

9–10 TP 3 TP 1 TP 4 TP 5 TP 2

10–11 TP 3 TP 1 TP 4 TP 5 TP 2

11–12 Intro in 
MED 2 1522

TP 3 TP 1 TP 4 TP 5 TP 2

8–9 TP 1 TP 4 TP 3 TP 2 TP 5

9–10 TP 1 TP 4 TP 3 TP 2 TP 5

10–11 TP 1 TP 4 TP 3 TP 2 TP 5

11–12 Intro in 
MED 2 1522

TP 1 TP 4 TP 3 TP 2 TP 5

8–9 TP 5 TP 3 TP 2 TP 1 TP 4

9–10 TP 5 TP 3 TP 2 TP 1 TP 4

10–11 TP 5 TP 3 TP 2 TP 1 TP 4

11–12 Intro in 
MED 2 1522

TP 5 TP 3 TP 2 TP 1 TP 4

P1

P2

P3
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Single Chain Proper9es2



2.1 
The Ideal Polymer Chain



What Do They Have in Common?

63

• … can be described by the same sta9s9cal approach (the random walk model) 

• How can this be used to express the polymer chain size? How does it relate to polymer molecular weight?

a polymer chain a drunk person Brownian mo9on 
(gas parIcles)



Chain Dimensions

64

• chain sizes may be of vastly different dimensions, strongly depending on parameters like T or solvent

collapsed globule 
(apracIve interacIons)

random walk 
(no effecIve interacIon)

extended conforma9on 
(long-range repulsion)

• polymer conformaIon depends on chain flexibility, interacIons between repeat units, and interacIons 
with the surrounding medium 

• example of a hypotheIcal polymer size: 1010 monomers; magnificaIon factor: 108

the ideal polymer chain



Simplifica9on of the Polymer Chain

65

• ideal polymer chain: no energe9c interac9ons between repea9ng units 
• accurate descrip9on of polymer melts and solu9ons

• from atoms and bonds to a chain of beads and links: models with variable repeaIng unit size, link 
sizes, bending and torsion angles

snapshot of PP (50 repea9ng units)
l

Vstretch = κ
2 (l − l0)2

i

i+1

i-1

ai-1

ai

α

φ



Polymer Conforma9ons

66

• the number of possible conforma9ons increases dras9cally with the chain length 
• conforma9onal changes happen on the picosecond 9me scale

methane ethane polyethylene

• conformaIon: the shape of a molecule resulIng from rotaIon around fixed bonds

1 conforma9on 
(fixed bond length 

and angles)

3 conforma9ons 
(almost free rotaIon 

around C-C bond)

32n conforma9ons 

n

109.5°



Energy Landscape of Polymer Conforma9ons

67

• rota9on around single bonds at r.t. is governed by  (thermal equilibrium) and  (energy barrier)ΔE Δϵ

main source of flexibility 
is the variaIon of torsion 
angles.

E

φ
0 60 120 180

trans

gauche(–)

eclipsedeclipsed
eclipsed
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gauche(+)
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Δε

R
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H

R

H H

HR

H

H
H
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H
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R
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ΔE
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Contour Length

68

• However, gauche states of torsion angles lead to flexibility in the chain conforma9on

• the largest possible end-to-end distance (contour length or projecIon length), , is an all-trans 
(zig-zag) conformaIon.

Rmax

Rmax = nl cos θ
2

l
θθ

l cos θ
2

all-trans conformation

tetrahedral angle:  = 68°, 
bond length:  = 1.54 Å

θ
lθ

Example: PE

Rmax = nl
contour length:

projection length: 
(maximum 

end-to-end distance)



Gauche and Trans States in PE
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• typically, all-trans rod-like chain sec9ons comprise fewer than 10 main-chain bonds 
• most synthe9c polymers are hence quite flexible and are represented as random coils

Rn

• polyethylene chain with 10’000 carbon atoms

 conformaIon≈ 310′ 000 only 1 is all-trans!

ng

nt
= 2 exp(− Δϵ

kbT
) for PE: Δϵ ≈ 3.34 kJ

mol

T (K)
ng

nt

100 

200 

300

0.036 

0.264 

0.524



Freely Jointed Chain Model
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< R2 > ≡ < R2
n > = <

n

∑
i=1

ai ⋅
n

∑
j=1

aj > =
n

∑
i=1

a2
i + ∑

i≠j
ai ⋅ aj = n |a |2 + < ∑

i≠j
ai ⋅ aj > = n |a |2 ≡ nl2

• no restricIon upon bond angle and bond rotaIon 

• However,  is zero for an isotropic collecIon of ideal chains< Rn >

Rn

a1 a2

an

Rn = a1 + a2 + . . . + an

• polymer chain size represented by the mean-square end-to-end distance

< R2 > ≡ < R2
n > = <

n

∑
i=1

ai ⋅
n

∑
j=1

aj > =
n

∑
i=1

a2
i + ∑

i≠j
ai ⋅ aj = n |a |2 + < ∑

i≠j
ai ⋅ aj > = n |a |2 ≡ nl2

• hence, the root mean-square end-to-end distance is propor9onal to M < R2 >1
2 ∝ n ∝ M

< Rn
2 >1

2 ≅ n a

polymer chain size



The “Gaussian” Chain

71see Reading Recommenda9on: Takamasa Sakai, Physics of Polymer Gels, 2020

• most probable are conformaIons with , but it’s rms value is finite and proporIonal to Rn = 0 n

• an ideal chain can be mapped onto a random walk and obeys Gaussian staIsIcs
pr
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 d
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P = ( 3
2πna2 )3/2exp(− 3R2

n

2na2 )
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n
0
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4

0 20 40 60

P4πR2dr = 4π( 3
2πna2 )3/2exp(− 3R2

n

2na2 )R2
ndr

Rn

r

r + dr

z

x

y

Rn Rn

(see also 
Exercise Sheet)



Difference Between Probability Density and Radial Distribu9on Func9on

72

• Consider archery…

Where is the most probable posiIon of 
any shot? 

What would your average points be?



End-to-End Distance: Not Always An Appropriate Measure…

73

• the end-to-end distance of some polymers can not be defined unambiguously

block copolymer star polymer branched polymer gra`ed polymer

palm-tree ABn ring coil-cycle-coil brush polymer



Radius of Gyra9on

74

• The mean-square of  relates to the mean-squared end-to-end distance for an ideal linear chain:Rg

• radius of gyra9on, , characterises the polymer size of any architecture (including branched or ring 
polymers)

Rg

ri

rc

Si

R2
g = 1

N

N

∑
i=1

( r i − r c)2 = 1
N

N

∑
i=1

S2
i

N

∑
1

S i = 0

< R2
g > = nl2

6 = < R2
n >

6

< R2
g > = 1

6
< R2

n >

for large :n



Freely Rota9ng Chain Model

75

• all torsion angles  are assumed to be equally probable; tetrahedral angles  are fixed.−π < φ ⩽ π α

• dependence of of an ideal linear chain on number of bonds, bond length, and bond angle:< R2 >

< R2
n > = na2 ( 1 + cosα

1 − cosα )

average projec9on from +1 on : a i+1 a i |a |cosα

average projec9on from from +1 on : a j a i |a |cos|j−i|α

< R2
n > = n |a |2 + < ∑

i≠j
a i ⋅ a j > = n |a |2 + 2 |a |2

n

∑
i<j

cosj−iα

mean square end-to-end distance: ai

ai+1
α

φ

for large :n



Hindered Rota9on Model

76

• constant bond lengths and angles, independent torsion angles with hindered rota9on by a poten9al, U

E

φ
0 60 120 180

trans

gauche(–)

eclipsedeclipsed
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eclipsed

gauche(+)

240 300 360

Δε

R

H H

HH

R

R

H H

RH

H
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ΔE

U

< R2 > = na2 ( 1 + cosα
1 − cosα ) ( 1 + < cosφ >

1 − < cosφ > )
for large :n



Chain Flexibility and the Characteris9c Ra9o
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α = 68∘

C∞ ≅ 2

• the mean-square end-to-end distance can be approximated for long chains:

random coil: 

C∞ = 1 C∞ ≫ 1

< R2 > ≅ {
n ⋅ a2

2n ⋅ a2

3n ⋅ a2

freely jointed chain
freely rotaIng chain
hindered rotaIon

chain 
ridigity

• the characteris9c ra9o is a correc9on term for chain ridigity/flexibility.

stretched 
conformaIon: 

= 1 + cosα
1 − cosα

C∞
< R2 > ≅

Flory’s characteristic ratio

na2C∞

= ( 1 + cosα
1 − cosα ) ( 1 + < cosφ >

1 − < cosφ > )C∞

C∞ = 1freely jointed chain:

freely rotaIng chain

hindered rotaIon



Typical Values of C∞ in Solu9on
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• ideal chain behavior in polymer melts or polymer solu9ons

Polymer Solvent T [°C]

polyethylene 1-dodecanol 138 6.7
polystyrene (atacIc) cyclohexane 35 10.2
polypropylene (atacIc) cyclohexane 92 6.8
polyisobutylene benzene 24 6.6
polyvinylacetate i-pentanone + hexane 25 8.9
polyoxomethylene aqueous K2SO4 35 4.0
polycarbonate methylenechloride 25 2.2
poly(benzobisoxazole) 93
poly(p-benzamide) 325

C∞

C∞ = 2.2?• be careful with an interpreta9on (see Exercise Sheet):



Examples
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• chain s9ffness increases with increasing side chain bulkiness (limited rota9on around main chain bonds) 
• aroma9c rings, double bonds increase the rigidity of a polymer chain

C∞ = 20.3

poly(p-benzamide)

C∞ = 10 C∞ = 14

O O
n

O O
n

O O
n HN

O
HN

O
HN

O

C∞ = 325

several poly(methylmethacrylate)s

why?



Devia9ons from Ideal-Chain Behaviour in PE

80

• real chains: further correla9ons between bond vectors due to forces ac9ng on individual chain elements

local (or non-local, more 
far reaching) interacIon 

• Flory’s characterisIc raIo, , approaches a finite value only for  (  for PE)Cn n → ∞ C∞ = 6.7

1001000
0

1

2

5

4

3

6

150 200 250
number of bonds

C n
C ∞

interdependent rotations

free rotation

independent hindered rotation

1
i-1 i

j
j-1

2

n

Rn

r i

r j

θij

Cn = 1
n

n

∑
i=1

C′ i C′ i ≡
n

∑
j=1

< cosθij >



Kuhn Segments

81

• real polymer chains can be represented by an equivalent freely-jointed chain:

•  is the Kuhn segment length which increases with chain s9ffness (see also Exercise 4)b

R

b
b bb

b

b
b

b

b

same projec9on length: 
(maximum end-to-end distance)

same end-to-end distance: : < R2 > = Nb2

na = Nb

b = C∞a

na = NbC∞na2

= C∞na2

Rmax

Kuhn segment



2.2 
Real Polymer Chains



random walk self-avoiding walk

Self-Avoiding Random Walk

83

• real polymer chains may be mapped onto self-avoiding walks (excluded volume by other monomers)

• real chain: chain segments have a finite volume and they undergo interacIons with their surrounding

1000 steps 1000 steps

end-to-end distance

0 10 20 30 40 50
steps

<
R

>2

self-avoiding walk

random walk

∝ n

∝ n3/2

(empirical)



U(r)

r
0

U(r)

r
0

apracIve monomer-monomer 
interacIon

zero monomer-monomer net 
interacIon

more about the Lennard-Jones poten9al in Chapter 4.1

Effec9ve Interac9on Poten9als

84

• Lennard Jones poten9al: monomer-monomer aurac9on, but strong repulsion at short distances

• polymer conforma9on is determined by monomer-monomer and monomer-solvent interac9ons

polymers in soluIon

hard-sphere 
potenIal

M-S

M-MM
M M

S
S S

S

S

S S

SS
S

dr

r * = 2dr

Lennard-Jones 
potenIal

equilibrium 
distance



f(r)

rr*0

P(r)

rr*

1

probability Mayer f-funcIon excluded volume

Excluded Volume

85

• excluded volume: space that each chain segments blocks to its surrounding 

• probability of distance  between 2 monomers expressed by Boltzmann’s distribuIon or Mayer f-funcIonr

P(r) ∝ exp[− U(r)
kBT

] f(r) = exp[− U(r)
kBT

] − 1
v = − ∫ f(r)d3r

repulsive interacIons 
increase v

apracIve interacIons 
decrease v dr r * = 2dr

vmax = 4π
3 (2dr)3 = 8vM

vM

hard-sphere 
potenIal

Lennard-Jones 
potenIal



f(r)

rr*0

f(r)

r
r*

0
hard-sphere
potential

athermal theta poor

Classifica9on of Solvents

86

• beuer solvent quality leads to polymer coil expansion, and a lower segmental density in the coil interior

non-solvent
v = (2dr)3 v = 0

ideal chain behaviourchains are swollen chains are collapsed

v = − (2dr)3

“enhancement” 
due to monomer-
monomer apracIon

f(r)

rr*0

water & PScyclohexane & PS (  = 34.5 °C)Tθ

good
0 < v < (2dr)3 −(2dr)3 < v < 0

EtOH & PStoluene & PSethyl benzene & PS

no net repulsion!

no net apracIon!



more on Phase Diagrams in Chapter 4.2

Phase Diagram of Polymer Solu9ons

87

• At the -temperature, polymer behave ideal and are miscible with solvent at any concentra9onθ

• at sufficiently low concentraIon, chains are well dispersed and do not phase-separate from the solvent

binodal

te
m

pe
ra

tu
re

composition

θ
dilute

semidilute

semidilute good

two-phase

co
nc

en
tra

te
d

globules 
(collapsed chains 
conformaIon)

ideal chain 
behaviour

swollen

1

2

3

cyclohexane & PS 
 = 34.5 °CTθ

example:



Omnipresence of the -State in Polymer Meltsθ

88

• polymer chains adopt their random coil conforma9on  in polymer melts at any temperature!

• polymer melts consItute an 

athermal state (idenIcal “monomer-

monomer” &”monomer-solvent” 

interacIons) 

• same tendency of all chains to 

expand 

• as a result, no chain can expand



Outlook
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see Chapter 5.1 (Rubber Elas9city)

λ1x

λ2y

λ3zz

x

y

How does the end-to-end 
distance change upon 

deforma9on?



Learning Outcome
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• every possible conforma9on of an ideal chain can be mapped onto a random walk 

• a common feature to all ideal chain models is that size scales with  for large  

• restric9ons in available chain conforma9on with respect to the freely jointed chain is expressed using 
, a measure of chain “s9ffness”. 

• accurate descrip9on of all polymer melts and certain behaviour in solu9on with the ideal chain model

M n

C∞

no torsion and bond 
angle restricIon

bond angle 
restricIon

torsion and bond angle 
restricIon

increased chain rigidity

freely jointed chain freely rota9ng chain hindered rota9ng chain

< Rn
2 > ≅ C∞na2

Rn

a1 a2

an ai

ai+1
α

φ
ai

ai+1
α

φ

C∞ = 1


